# The Mercury Vanadates with the Empirical Formulas $\mathrm{HgVO}_{3}$ and $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ 

Annemarie L. Wessels and Wolfgang Jeitschko ${ }^{1}$<br>Anorganisch-Chemisches Institut der Universität Münster, Wilhelm-Klemm-Strasse 8, D-48149 Münster, Germany

Received February 13, 1996; accepted May 8, 1996


#### Abstract

Needle-shaped crystals of $\mathrm{HgVO}_{3}$ (orange) and $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ (yellow) have been prepared by annealing mercury(II) oxide with an amorphous mercury vanadate of the approximate composition $\mathrm{HgV}_{2} \mathrm{O}_{6}$ in molar ratios varying between $1: 1$ and $4: 1$ in evacuated, sealed silica tubes at $400^{\circ} \mathrm{C}$. The crystal structures of both compounds have been determined from four-circle diffractometer data. $\mathrm{HgVO}_{3}: P \overline{1}, a=359.2(1) \mathrm{pm}, b=475.2(1) \mathrm{pm}$, $c=858.8(1) \mathrm{pm}, \alpha=88.32(1)^{\circ}, \beta=79.60(1)^{\circ}, \gamma=89.30(1)^{\circ}$, $Z=2, R=0.034$ for 1763 structure factors and 32 variable parameters. $\mathrm{Hg}_{2} \mathrm{VO}_{4}: P 2_{1} / n, a=367.3(1) \mathrm{pm}, b=1650.3(1)$ $\mathrm{pm}, c=1425.5(1) \mathrm{pm},=89.99(1)^{\circ}, Z=8, R=0.038$ for 1668 $F$ values and 91 variables. In both compounds the vanadium atoms are irregularly surrounded by five oxygen atoms. These coordination polyhedra share common edges, thus forming infinite $\left(\mathrm{VO}_{3}^{1-}\right)_{n}$ chains, which are aligned parallel to each other. In $\mathrm{HgVO}_{3}$ these chains are linked by pairs of mercury(I) atoms, building two-dimensionally infinite layers of the composition $\left(\mathrm{Hg}_{2}^{2+}\right)_{n}\left(\mathrm{VO}_{3}^{1-}\right)_{2 n}$. In contrast, in $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ the $\left(\mathrm{VO}_{3}^{1-}\right)_{n}$ chains do not form any strong bonds to the mercury atoms. In that compound the mercury atoms occur in the oxidation states I and II, and together with some oxygen atoms they form infinite chains with the shape of condensed spirals surrounding the $\left(\mathrm{VO}_{3}^{1-}\right)_{n}$ chains and thus mimicking orthorhombic symmetry. This compound may be expressed by the formula $\left(\mathrm{Hg}_{2}^{2+} \cdot \mathbf{2 H g O}\right)_{n}\left(\mathrm{VO}_{3}^{1-}\right)_{2 n} . \quad$ © 1996 Academic Press, Inc.


## INTRODUCTION

Numerous oxovanadates of mercury have been reported in the past. In the 8th edition of Gmelin's Handboook (1) covering the literature up to 1966 some ten mercury vanadates are described with mercury: vanadium ratios varying between $3: 1$ and $1: 2$. The first compound reported with a crystal structure is the high temperature $(\beta)$ modification of $\mathrm{HgV}_{2} \mathrm{O}_{6}$ (2). The low-temperature ( $\alpha$ ) modification of this compound has been suggested to be isotypic with $\mathrm{ZnV}_{2} \mathrm{O}_{6}$ and $\mathrm{CdV}_{2} \mathrm{O}_{6}$ (3). X-ray powder diagrams have been published by Angenault (4) for the tentative

[^0]compositions " $\mathrm{HgV}_{2} \mathrm{O}_{6}$," " $\mathrm{Hg}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$," " $\mathrm{Hg}_{4} \mathrm{~V}_{2} \mathrm{O}_{9}$," and " $\mathrm{Hg}_{6} \mathrm{~V}_{2} \mathrm{O}_{11}$." All of these four compounds have been assumed to crystallize dimorphic. Sleight (5) prepared a high pressure phase (II) of the vanadate $\mathrm{Hg}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$. This compound appears to crystallize with a pyrochlore-related structure, however, a full structure determination was not carried out. Structural data of the low temperature ( $\alpha$ ) modification of this compound have also been reported (6). Volkov et al. (7) investigated the $\mathrm{HgO}-\mathrm{V}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}$ system at high pressures ( 2.5 and 7.7 GPa ) and observed several mercury vanadates to which they ascribed the formulas $\beta-\mathrm{Hg}_{x} \mathrm{~V}_{2} \mathrm{O}_{5}(0.16 \leq x \leq 0.20), \mathrm{Hg}_{4} \mathrm{~V}_{18} \mathrm{O}_{39}, \alpha_{\mathrm{p}}$ - and $\beta_{\mathrm{p}}$ $\mathrm{HgV}_{2} \mathrm{O}_{4}, \mathrm{HgV}_{2} \mathrm{O}_{5}, \beta-\mathrm{HgV}_{2} \mathrm{O}_{6}, \beta-\mathrm{Hg}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$, and $\mathrm{Hg}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$. The powder patterns of the vanadates with the empirical formulas $\mathrm{HgVO}_{3}$ and $\mathrm{Hg}_{2} \mathrm{VO}_{4}$, characterized in the present work, correspond to those of the compounds with the tentative formulas " $\beta-\mathrm{Hg}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ " and " $\beta-\mathrm{Hg}_{4} \mathrm{~V}_{2} \mathrm{O}_{9}$ " assigned by Angenault (4). A preliminary account of this work has been given at a conference (8).

## SAMPLE PREPARATION AND LATTICE CONSTANTS

We prepared $\mathrm{HgVO}_{3}$ and $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ by reaction of amorphous mercury vanadates with mercury(II) oxide. Starting materials were $\mathrm{NH}_{4} \mathrm{VO}_{3}$ (Merck, $>99 \%$ ) and $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$. $\mathrm{H}_{2} \mathrm{O}$ (Fluka, $>99 \%$ ). $\mathrm{NH}_{4} \mathrm{VO}_{3}$ was dissolved in a diluted solution of KOH . This solution was neutralized with $\mathrm{HNO}_{3}$ and subsequently mixed with an aqueous solution of $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. The resulting yellow suspension was boiled for 30 min and the orange precipitate was separated by filtration, washed, and dried in a dessicator over calcium chloride for 2 days. The resulting amorphous products had colors varying between dark yellow and light brown. Their energy-dispersive X-ray fluorescence analyses showed mercury to vanadium ratios close to $1: 2$, suggesting the composition $\mathrm{HgV}_{2} \mathrm{O}_{6}$.

Red mercury(II) oxide (Merck $>99 \%$ ) was then intimately mixed with this mercury vanadate in molar ratios varying between $1: 1$ and $4: 1$. Samples of $150-350 \mathrm{mg}$ were sealed in evacuated silica tubes of $3-6 \mathrm{~cm}^{3}$, annealed for 1 week at $400^{\circ} \mathrm{C}$ and quenched in air. The Guinier powder

TABLE 1
Crystal Data of $\mathrm{HgVO}_{3}$ and $\mathrm{Hg}_{2} \mathrm{VO}_{4}$

|  | $\mathrm{HgVO}_{3}$ | $\mathrm{Hg}_{2}$ |  |
| :---: | :---: | :---: | :---: |
| Space group | $P \overline{1}$ | $P 2{ }_{1} / n$ | $\left[P 2_{1} / c\right]$ |
| Lattice constants (Guinier powder) ${ }^{\text {b }}$ |  |  |  |
| $a(\mathrm{pm})$ | 359.2(1) | 367.3(1) | [367.3(1)] |
| $b$ (pm) | 475.2(1) | 1650.3(1) | [1650.3(1)] |
| $c(\mathrm{pm})$ | 858.8(1) | 1425.5(1) | [1472.1(1)] |
| $\alpha\left({ }^{\circ}\right)$ | 88.32(1) |  |  |
| $\beta\left({ }^{\circ}\right)$ | 79.60(1) | 89.99(1) | [104.46(1)] |
| $\gamma\left({ }^{\circ}\right)$ | 89.30(1) |  |  |
| $V\left(\mathrm{~nm}^{3}\right)$ | 0.1441 | 0.8641 | [0.8641] |
| Lattice constants (CAD-4 diffr.) ${ }^{b}$ |  |  |  |
| $a(\mathrm{pm})$ | 358.8(1) | 367.3(1) |  |
| $b$ (pm) | 474.5(1) | 1649.6(4) |  |
| $c(\mathrm{pm})$ | 857.9(1) | 1424.6(3) |  |
| $\alpha\left({ }^{\circ}\right)$ | 88.33(1) | 90.02(2) |  |
| $\beta\left({ }^{\circ}\right)$ | 79.59(1) | 89.93(1) |  |
| $\gamma\left({ }^{\circ}\right)$ | 89.34(1) | 89.95(1) |  |
| $V\left(\mathrm{~nm}^{3}\right)$ | 0.1436 | 0.8632 |  |
| Formula weight | 299.53 | 516.12 |  |
| Formula units/cell | $Z=2$ | $Z=8$ |  |
| Calculated density ( $\mathrm{g} / \mathrm{cm}^{3}$ ) | 6.901 | 7.934 |  |
| Absorption coefficient $\mu_{\text {MoK } \alpha}\left(\mathrm{cm}^{-1}\right)$ | 561 | 728 |  |
| Crystal dimensions ( $\mu \mathrm{m}^{3}$ ) | $110 \times 20 \times 10$ | $300 \times 20 \times 20$ |  |
| Highest/lowest transmission | 1.87 | 1.78 |  |
| $\theta / 2 \theta$ scans up to | $2 \theta=90^{\circ}$ | $2 \theta=78^{\circ}$ |  |
| Range in $h, k, l$ | $\pm 9, \pm 17, \pm 7$ | $\pm 5, \pm 21, \pm 24$ |  |
| Total number of reflections | 4710 | 12045 |  |
| Unique reflections | 2355 | 3101 |  |
| Inner residual | $R_{\mathrm{i}}=0.025$ | $R_{\mathrm{i}}=0.030$ |  |
| Reflections with $I_{\mathrm{o}}>1 \sigma\left(I_{\mathrm{o}}\right)$ | 1763 | 1668 |  |
| Number of variables | 32 | 91 |  |
| Conventional residual | $R=0.034$ | $R=0.038$ |  |
| Weighted residual | $R_{\text {w }}=0.025$ | $R_{\text {w }}=0.037$ |  |

${ }^{a}$ The structure of $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ is pseudoorthorhombic. Therefore the nonstandard setting $P 2_{1} / n$ of the space group $P 2_{1} / c$ (No. 14) has been chosen for the description of this compound.
${ }^{b}$ The lattice constants obtained from single-crystal diffractometer data are usually affected by systematic errors due to absorption. Therefore the interatomic distances were calculated with the lattice constants from the powder data.
patterns of the reaction products usually showed mixtures of $\mathrm{HgVO}_{3}$ and $\mathrm{Hg}_{2} \mathrm{VO}_{4}$. Almost single-phase $\mathrm{HgVO}_{3}$ was obtained when the starting ratio was close to $1: 1$, while samples aiming for $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ always contained various amounts of $\mathrm{HgVO}_{3}$. Apparently some oxygen was liberated during these reactions, as was also suggested by the small amounts of elemental mercury frequently observed in the reaction products.

Usually the resulting mercury vanadates were well crystallized. Sometimes needle-shaped crystals of $\mathrm{HgVO}_{3}$ (with orange color) or $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ (yellow) were observed with up to 4 mm length.

The samples were characterized by their Guinier powder diagrams using $\mathrm{Cu} K \alpha_{1}$ radiation with $\alpha$-quartz ( $a=491.30$ $\mathrm{pm}, c=540.46 \mathrm{pm}$ ) as an internal standard. The diagrams of $\mathrm{HgVO}_{3}$ and $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ were identical with those obtained
by Angenault (4) for " $\beta-\mathrm{Hg}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ " and " $\beta-\mathrm{Hg}_{4} \mathrm{~V}_{2} \mathrm{O}_{9}$," respectively. The lattice constants (Table 1) were refined by least-squares fits. To ensure proper indexing, the observed powder patterns were compared with those calculated (9), using the positional parameters obtained during the structure determinations. In agreement with Angenault's results the lattice constants of $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ are pseudoorthorhombic, however, the lower monoclinic symmetry has been clearly established by the structure refinement as discussed further below.

## STRUCTURE DETERMINATIONS

Single crystals of $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ were investigated in a Weissenberg camera with $\mathrm{Cu} K \alpha$ radiation. The films reflect the pseudoorthorhombic cell dimensions, however, the inten-


FIG. 1. Streoprojections of the $\mathrm{HgVO}_{3}$ and $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ structures. The metal atoms are shown with their thermal ellipsoids, the oxygen atoms with the isotropic $B$ values, both at the $95 \%$ probability limits.
sity distribution, especially of the weak reflections, was that of a monoclinic lattice. The space group extinctions ( $h 0 l$ observed only with $h+l=2 n$ and $0 k 0$ only with $k=2 n$ ) led to the space group $P 2_{1} / n$, a nonstandard setting of $P 2_{1} / c$ (No. 14). The setting $P 2_{1} / n$ was retained because of its proximity to the orthorhombic cell, which is also reflected by the architecture of the cell content.

The intensity data for both structure determinations were collected on an automated four-circle diffractometer with graphite-monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation, a scintillation counter, and a pulse-height discriminator. The background was determined at both ends of each $\theta / 2 \theta$ scan. Empirical absorption corrections were applied from psiscan data. Further details of the data collections are summarized in Table 1.

The structures were solved by interpretation of the Patterson maps, which led to the positions of all metal atoms in $\mathrm{HgVO}_{3}$ and to the position of one mercury atom in $\mathrm{Hg}_{2} \mathrm{VO}_{4}$. The other atoms were located by difference Fou-


FIG. 2. A cutout from one two-dimensionally infinite net of the $\mathrm{HgVO}_{3}$ structure. The oxygen atoms are shown as open circles. Singledigit numbers correspond to the atom designations. Some interatomic distances (pm) and angles $\left(^{\circ}\right.$ ) are also indicated.

TABLE 2
Atomic Parameters of $\mathrm{HgVO}_{3}$ and $\mathrm{Hg}_{2} \mathrm{VO}_{4}{ }^{a}$

| $\mathrm{HgVO}_{3}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Atom | $P \overline{1}$ | $x$ |  | $y$ |  | $z$ | $B_{\text {eq }}$ or $B$ |
| Hg | $2 i$ | 0.28495(6) |  | 0.18523(5) |  | 0.57431(3) | 1.409(3) |
| V | $2 i$ | 0.1971(2) |  | 0.3855(2) |  | 0.13572(8) | 0.77(1) |
| O1 | $2 i$ | 0.0980(11) |  | 0.4968(8) |  | 0.3303(4) | 1.34(5) |
| O2 | $2 i$ | $0.1939(11)$ |  | 0.0511(8) |  | 0.1509(4) | 1.68(6) |
| O3 | $2 i$ | 0.7138(10) |  | 0.4830(7) |  | 0.0906(4) | 1.06(5) |
|  | $U_{11}$ | $U_{22}$ | $U_{33}$ |  | $U_{12}$ | $U_{13}$ | $U_{23}$ |
| $\underset{\mathrm{V}}{\mathrm{Hg}}$ | 162.5(7) | 156.8(7) | 206.9(7) |  | 45.9(6) | -6.4(6) | -38.4(6) |
|  | 86(3) | 129(3) | 73(2) |  | 7(3) | -9(2) | 9(2) |
| $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ |  |  |  |  |  |  |  |
| Atom | $P 2_{1} / n$ | $x$ |  | $y$ |  | $z$ | $B_{\text {eq }}$ or $B$ |
| Hg 1 | $4 e$ | 0.1238(3) |  | 0.33090(5) |  | 0.37609(7) | 2.21(2) |
| Hg 2 | $4 e$ | 0.9950(2) |  | $0.99479(5)$ |  | 0.24912(6) | 1.00(1) |
| Hg3 | $4 e$ | 0.9985(3) |  | 0.17978(5) |  | 0.37438(6) | 1.60(1) |
| Hg 4 | $2 a$ | 0 |  | 0 |  | 0 | 0.92(2) |
| Hg 5 | $2 b$ | 0 |  | 0 |  | 1/2 | 1.11(2) |
| V1 | $4 e$ | 0.5013(9) |  | 0.1781(2) |  | 0.6182(2) | 0.82(5) |
| V2 | $4 e$ | 0.9991 (9) |  | 0.3279(2) |  | 0.6301(2) | 0.77(5) |
| O1 | $4 e$ | 0.509(4) |  | 0.1260(11) |  | 0.5180(11) | 2.2(3) |
| O2 | $4 e$ | 0.014(4) |  | 0.9369(10) |  | 0.1239(12) | 2.0(3) |
| O3 | $4 e$ | 0.000(4) |  | 0.2063(9) |  | 0.1242(11) | 1.6(2) |
| O4 | $4 e$ | 0.486(4) |  | 0.8905(10) |  | 0.2931(10) | 1.7(3) |
| O5 | $4 e$ | 0.963(4) |  | 0.0468(10) |  | 0.3742(12) | 2.1(3) |
| O6 | $4 e$ | 0.502(4) |  | 0.1024(9) |  | 0.0438(9) | 1.4(3) |
| O7 | $4 e$ | 0.499(4) |  | 0.2880(9) |  | 0.1231(10) | 1.4(2) |
| O8 | $4 e$ | 0.497(4) |  | 0.1206(10) |  | $0.2296(10)$ | 1.7(3) |
|  | $U_{11}$ | $U_{22}$ | $U_{33}$ | $U_{12}$ |  | $U_{13}$ | $U_{23}$ |
| Hg 1 | 513(6) | 99(3) | 228(4) |  | -103(4) | -15(4) | 8(4) |
| Hg 2 | 152(3) | 94(3) | 134(3) |  | 7(4) | 5(3) | -14(3) |
| Hg3 | 301(4) | 79(3) | 227(3) |  | -33(4) | -1(3) | 1(4) |
| Hg 4 | 119(5) | 97(5) | 133(4) |  | 8(5) | -7(4) | 14(4) |
| Hg 5 | 188(6) | 101(5) | 131(4) |  | 1(5) | -8(4) | 13(5) |
| V1 | 78(13) | 67(13) | 165(14) |  | 5(16) | -4(12) | -2(16) |
| V2 | 80(13) | 78(13) | 134(13) |  | -6(18) | 7(11) | -2(17) |

${ }^{a}$ The isotropic thermal parameters $B_{\text {eq }}$ and $B$ are listed in units of $10^{4} \mathrm{pm}^{2}$. The anisotropic thermal parameters $U$ ( $\mathrm{pm}^{2}$ ) are defined by $\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+\cdots+2 k l b^{*} c^{*} U_{23}\right)\right]$.
rier syntheses. The structures were refined by full-matrix least-squares cycles using atomic scattering factors (10), corrected for anomalous dispersion (11). Parameters accounting for secondary isotropic extinction were optimized during the least-squares refinements. In the final leastsquares cycles the metal atoms were refined with anisotropic and the oxygen atoms with isotropic thermal parameters. Stereoplots with the thermal ellipsoids of both structures are shown in Fig. 1. The atom parameters and interatomic distances are listed in Tables 2 and 3.

## DISCUSSION

$\mathrm{HgVO}_{3}$ and $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ crystallize with new structure types, as is frequently the case for mercury compounds. Both compounds contain pentavalent vanadium with five oxygen neighbors. For simplicity we call this coordination a distorted trigonal bipyramid, although it could also be considered a distorted square pyramid. These trigonal bipyramidal $\mathrm{VO}_{5}$ groups are linked via common edges, thus forming infinite $\left(\mathrm{VO}_{3}^{1-}\right)_{n}$ chains, as can be seen from Figs. 2 and 3.

TABLE 3
Interatomic Distances of $\mathrm{HgVO}_{3}$ and $\mathrm{Hg}_{2} \mathrm{VO}_{4}{ }^{a}$

| $\mathrm{HgVO}_{3}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Hg}: \mathrm{Hg}$ | 254.3(1) | V : O2 | 159.1(4) | O1: | V | 174.1(4) | O2: | V | 159.1(4) |
| O1 | 211.2(4) | O1 | 174.1(4) |  | Hg | 211.2(4) |  | Hg | 286.6(4) |
| O1 | 270.8(4) | O3 | 188.7(4) |  | Hg | 270.8(4) | O3: | V | 188.7(4) |
| O2 | 286.6(4) | O3 | 189.6(4) |  | Hg | 294.6(4) |  | V | 189.6(4) |
| O1 | 294.6(4) | O3 | 199.5(3) |  |  |  |  | V | 199.5(3) |
| $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ |  |  |  |  |  |  |  |  |  |
| $\mathrm{Hg} 1: \mathrm{Hg} 3$ | 253.6(1) | Hg4: 2 O 2 | 205(2) | O1: | V1 | 167(2) | O5: | Hg 5 | 196(2) |
| O2 | 220(2) | 2 O 6 | 257(1) |  | Hg 5 | 276(2) |  | Hg2 | 198(2) |
| O4 | 264(1) | 2 O 6 | 258(1) |  | Hg5 | 281(2) |  | Hg3 | 220(2) |
| O6 | 267(1) | Hg5: 2 O 5 | 196(2) |  | Hg3 | 287(2) | O6: | V2 | 168(1) |
| O2 | 292(2) | 2 O 1 | 276(2) |  | Hg3 | 292(2) |  | Hg4 | 257(1) |
| $\mathrm{Hg} 2: \mathrm{O} 5$ | 198(2) | 2 O 1 | 281(2) | O2: | Hg2 | 203(2) |  | Hg4 | 258(1) |
| O2 | 203(2) | V1: O1 | 167(2) |  | Hg4 | 205(2) |  | Hg1 | 267(1) |
| O4 | 257(1) | O4 | 170(2) |  | Hg1 | 220(2) | O7: | V1 | 191(1) |
| O4 | 262(1) | O3 | 191(2) |  | Hg1 | 292(2) |  | V2 | 191(1) |
| O8 | 278(2) | O7 | 191(1) | O3: | V1 | 191(2) |  | V1 | 193(1) |
| O8 | 279(2) | O7 | 193(1) |  | V2 | 192(1) | O8: | V2 | 165(1) |
| Hg3: Hg 1 | 253.6(1) | V2: O8 | 165(1) |  | V2 | 192(1) |  |  | 278(2) |
| O5 | 220(2) | O6 | 168(1) | O4: | V1 | 170(2) |  |  | 279(2) |
| O1 | 287(2) | O7 | 191(1) |  | Hg2 | 257(1) |  |  | 293(1) |
| O1 | 292(2) | O3 | 192(1) |  | Hg2 | 262(1) |  | Hg3 | 293(1) |
| O8 | 293(1) | O3 | 192(1) |  | Hg1 | 264(1) |  |  |  |
| O8 | 293(1) |  |  |  |  |  |  |  |  |

${ }^{a}$ All distances shorter than $345(\mathrm{Hg}-\mathrm{Hg}, \mathrm{Hg}-\mathrm{V}, \mathrm{Hg}-\mathrm{O}), 305(\mathrm{~V}-\mathrm{V}, \mathrm{V}-\mathrm{O})$, and 225 pm ( $\mathrm{O}-\mathrm{O}$ ) are listed.


FIG. 3. Near-neighbor environments in the structure of $\mathrm{Hg}_{2} \mathrm{VO}_{4}$. Single-digit numbers correspond to the atom designations of the oxygen atoms. Selected interatomic distances and angles are given in pm units and degrees of arc.

Similar chains occur in the structures of other binary and ternary vanadium oxides, e.g., in $\mathrm{ZnV}_{2} \mathrm{O}_{6}(3,4), \mathrm{NaVO}_{3}$. $1.89 \mathrm{H}_{2} \mathrm{O}$ (12), $\beta-\mathrm{NaVO}_{3}$ (13), and $\mathrm{V}_{2} \mathrm{O}_{5}$ (14-17). To facilitate the comparison of the bond lengths and bond angles we label the oxygen atoms of these chains in the manner shown in Fig. 4. It can be seen from Table 4 that the V-O distances of the terminal $\mathrm{O}_{\mathrm{A}}$ and $\mathrm{O}_{\mathrm{B}}$ atoms are all rather short with average distances of $166.6,168.5$, and 166.5 pm for the vanadium atom in $\mathrm{HgVO}_{3}$ and the two different


FIG. 4. A cutout of the infinite $\mathrm{VO}_{3}$ chains occurring in various vanadates. The five oxygen atoms surrounding a central vanadium atom are labeled $\mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{E}}$ to facilitate the comparisons carried out in the Tables 4 and 5.

TABLE 4
Interatomic Distances (pm) within the Condensed Trigonal Bipyramidal $\mathrm{VO}_{5}$ Groups of Compounds with $\mathrm{VO}_{3}$ Chains ${ }^{a}$

|  | $\mathrm{HgVO}_{3}$ | $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ |  | $\mathrm{ZnV}_{2} \mathrm{O}_{6}$ | $\mathrm{NaVO}_{3} \cdot 1.89 \mathrm{H}_{2} \mathrm{O}$ | $\beta-\mathrm{NaVO}_{3}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| ${\mathrm{~V}-\mathrm{O}_{\mathrm{A}}}^{\mathrm{V}-\mathrm{O}_{\mathrm{B}}}$ | $159.1(4)$ | $167(2)$ | $165(1)$ | 168 | $164.3(1)$ | $163(2)$ |
| $\mathrm{V}_{\mathrm{C}}$ | $174.1(4)$ | $170(2)$ | $168(1)$ | 170 | $165.3(1)$ | $170(3)$ |
| $\mathrm{V}_{\mathrm{C}}$ | $188.7(4)$ | $191(1)$ | $192(1)$ | 183 | $188.2(3)$ | $192(1)$ |
| $\mathrm{V}_{\mathrm{D}}$ | $189.6(4)$ | $193(1)$ | $192(1)$ | 183 | $192.8(3)$ | $192(1)$ |

${ }^{a}$ The oxygen atoms are labeled as shown in Fig. 4.
vanadium atoms in $\mathrm{Hg}_{2} \mathrm{VO}_{4}$, respectively. The $\mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}$, and $\mathrm{O}_{\mathrm{E}}$ atoms of these compounds all have three vanadium neighbors, and consequently their individual V-O bonds are weaker with an average distance of 192.6 pm for the vanadium atom in $\mathrm{HgVO}_{3}$ and the same average distances of 191.7 pm for both vanadium atoms of $\mathrm{Hg}_{2} \mathrm{VO}_{4}$. It is remarkable that the $\mathrm{O}_{\mathrm{E}}$ atoms have the greatest $\mathrm{V}-\mathrm{O}$ distances in all compounds listed in Table 4 with $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ as the only exception.

The angular distortions of the trigonal bipyramidal $\mathrm{VO}_{5}$ groups are rather great (Table 5). The greatest deviation from an ideal bond angle occurs for the angle $\mathrm{O}_{\mathrm{C}}-\mathrm{V}-\mathrm{O}_{\mathrm{D}}$, which is $180^{\circ}$ for the ideal trigonal bipyramid and around $145^{\circ}$ for the $\mathrm{VO}_{5}$ groups in the two mercury vanadates. The $\mathrm{O}-\mathrm{V}-\mathrm{O}$ bond angles for the two vanadium atoms of $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ are practically the same, and in general these trigonal bipyramidal $\mathrm{VO}_{5}$ groups of $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ are less distorted than the $\mathrm{VO}_{5}$ group in $\mathrm{HgVO}_{3}$.

In both structures the $\left(\mathrm{VO}_{3}^{1-}\right)_{n}$ chains are aligned parallel to each other. In $\mathrm{HgVO}_{3}$ these chains are linked via pairs of mercury(I) atoms, thus forming two-dimensionally infinite,

TABLE 5
Bond Angles ( ${ }^{\circ}$ ) within the $\mathrm{VO}_{5}$ Groups of $\mathrm{HgVO}_{3}$ and $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ as Compared to the Bond Angles of an Ideal Trigonal Bipyramid ${ }^{a}$

|  | Trigonal <br> bipyramid | $\mathrm{HgVO}_{3}$ | $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ |  |
| :--- | :---: | ---: | ---: | ---: |
| $\mathrm{O}_{\mathrm{A}}-\mathrm{V}-\mathrm{O}_{\mathrm{C}}$ | 90 | 105.1 | 99.5 | 100.6 |
| $\mathrm{O}_{\mathrm{B}}-\mathrm{V}-\mathrm{O}_{\mathrm{C}}$ | 90 | 97.9 | 98.2 | 100.0 |
| $\mathrm{O}_{\mathrm{A}}-\mathrm{V}-\mathrm{O}_{\mathrm{D}}$ | 90 | 104.5 | 101.4 | 101.1 |
| $\mathrm{O}_{\mathrm{B}}-\mathrm{V}-\mathrm{O}_{\mathrm{D}}$ | 90 | 94.9 | 101.1 | 99.4 |
| $\mathrm{O}_{\mathrm{C}}-\mathrm{V}-\mathrm{O}_{\mathrm{E}}$ | 90 | 75.5 | 73.1 | 72.9 |
| $\mathrm{O}_{\mathrm{D}}-\mathrm{V}-\mathrm{O}_{\mathrm{E}}$ | 90 | 74.2 | 72.9 | 72.9 |
| $\mathrm{O}_{\mathrm{A}}-\mathrm{V}-\mathrm{O}_{\mathrm{E}}$ | 120 | 111.3 | 123.6 | 123.9 |
| $\mathrm{O}_{\mathrm{A}}-\mathrm{V}-\mathrm{O}_{\mathrm{B}}$ | 120 | 104.6 | 107.0 | 105.9 |
| $\mathrm{O}_{\mathrm{B}}-\mathrm{V}-\mathrm{O}_{\mathrm{E}}$ | 120 | 144.0 | 129.3 | 130.1 |
| $\mathrm{O}_{\mathrm{C}}-\mathrm{V}-\mathrm{O}_{\mathrm{D}}$ | 180 | 143.5 | 145.9 | 145.6 |

[^1]puckered (almost folded) layers (Figs. 1 and 2). These layers are held together by weak mercury-oxygen interactions with $\mathrm{Hg}-\mathrm{O}$ distances of 271, 287, and 295 pm . The shortest vanadium-oxygen distance between adjacent layers is 317 pm . The layered character of this structure is also apparent from the easy cleavage of the needle-like crystals.

In $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ the $\left(\mathrm{VO}_{3}^{1-}\right)_{n}$ chains do not form any strong bonds to the mercury atoms (Figs. 1 and 5). The architecture of this structure is quite unusual. At the first sight the symmetry is orthorhombic, and this may be the reason why Angenault (4) was not successful in determining this structure. In fact, after having solved the structure in the monoclinic space group $P 2_{1} / n$, and after studying various projections of the structure, we have in vain tried to find an orthorhombic setting. A ball-and-stick model of this compound, however, immediately revealed the lower symmetry. As can be seen from the parallel projection in the upper part of Fig. 5, the mercury and some oxygen atoms of this compound seem to form condensed 14-membered rings as they are known to occur in the structures of $\mathrm{Hg}_{2} \mathrm{OI}$ (18), $\mathrm{Hg}_{4} \mathrm{O}_{2}\left(\mathrm{NO}_{3}\right)_{2}(19,20)$, and $\mathrm{Hg}_{2} \mathrm{ReO}_{5}$ (21). The corresponding perspective (central) projection in the lower part of Fig. 5, however, shows that there are no 14-membered rings. Instead, the mercury and oxygen atoms of these "rings" form spirals, and the arrangement of these spirals is incompatible with the mirror planes as suggested by the parallel projection to extend perpendicular to the $z$ direction.

The mercury atoms of both compounds have the frequently occurring linear coordination (Figs. 2 and 3; all corresponding bond angles $\mathrm{Hg}-\mathrm{Hg}-\mathrm{O}$ and $\mathrm{O}-\mathrm{Hg}-\mathrm{O}$ deviate less than $8^{\circ}$ from $180^{\circ}$; the only exception is the $\mathrm{Hg} 3-$ $\mathrm{Hg} 1-\mathrm{O} 2$ angle of $153.2(4)^{\circ}$ in $\mathrm{Hg}_{2} \mathrm{VO}_{4}$.). The mercury( I$)$ atoms of $\mathrm{HgVO}_{3}$ and $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ form $\mathrm{Hg}-\mathrm{Hg}$ bonds of 254.3 and 253.6 pm , respectively. These distances are quite close to the average $\mathrm{Hg}-\mathrm{Hg}$ bond distance of 251.3 pm found for about $50 \mathrm{Hg}-\mathrm{Hg}$ bonds in some 30 mercury oxo-compounds (22). The average $\mathrm{Hg}(\mathrm{I})-\mathrm{O}$ distance of these compounds is 217 pm , and considering the large standard deviations, this is compatible with the corresponding distances


FIG. 5. Projections of the $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ structure along the short translation period. Single-digit numbers in the parallel projection correspond to the atom designations. The heights of the atoms are indicated in hundredths. In the lower part of the perspective projection the vanadiumoxygen chain is omitted and the windings of the mercury-oxygen chains are indicated by arrows. Asterisks mark the atoms where these chains are broken.
of $211.2(4)$ and $220(2) \mathrm{pm}$ in $\mathrm{HgVO}_{3}$ and $\mathrm{Hg}_{2} \mathrm{VO}_{4}$. The short $\mathrm{Hg}(\mathrm{II})-\mathrm{O}$ bond distances of 196(2), 198(2), and $205(2)$ in $\mathrm{Hg}_{2} \mathrm{VO}_{4}$ are also quite close to the average $\mathrm{Hg}(\mathrm{II})-\mathrm{O}$ bond distance of 206 pm found in a dozen other $\mathrm{Hg}(\mathrm{II})$ oxo-compounds with linear $\mathrm{O}-\mathrm{Hg}(\mathrm{II})-\mathrm{O}$ configuration (22).

## ACKNOWLEDGMENTS

We thank Dipl.-Ing. U. Rodewald and Dr. M. H. Möller for the collection of the four-circle diffractometer data and K. Wagner for the work at the scanning electron microscope. We are also indebted to Dr. G. Höfer (Heraeus Quarzschmelze) for a generous gift of silica tubes. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

## REFERENCES

1. "Gmelins Handbuch der Anorganischen Chemie 48: Vanadium B2," 8th ed., pp. 542-543, Verlag Chemie, Weinheim, 1967.
2. J. Angenault and A. Rimsky, C.R. Acad. Sci. Ser. C 266, 978 (1968).
3. J. Angenault and A. Rimsky, C.R. Acad. Sci. Ser. C 267, 227 (1968).
4. J. Angenault, Rev. Chim. Minér. 7, 651 (1970).
5. A. W. Sleight, Mater. Res. Bull. 7, 827 (1972).
6. M. Quarton, J. Angenault, and A. Rimsky, Acta Crystallogr. Sect. B 29, 567 (1973).
7. V. L. Volkov, B. G. Golovkin, A. S. Fedyukov, and Yu. G. Zainulin, Zh. Neorg. Khim. 35, 2922 (1990); Russ. J. Inorg. Chem. 35, 1660 (1990).
8. A. L. Wessels and W. Jeitschko, Z. Kristallogr. Suppl. 10, 105 (1995).
9. K. Yvon, W. Jeitschko, and E. Parthé, J. Appl. Crystallogr. 10, 73 (1977).
10. D. T. Cromer and J. B. Mann, Acta Crystallogr. Sect. A 24, 321 (1968).
11. D. T. Cromer and D. Liberman, J. Chem. Phys. 53, 1891 (1970).
12. A. Björnberg and B. Hedman, Acta Chem. Scand. A 31, 579 (1977).
13. K. Kato and E. Takayama, Acta Crystallogr. Sect. B 40, 102 (1984).
14. A. Byström, K.-A. Wilhelmi, and O. Brotzen, Acta Chem. Scand. 4, 1119 (1950).
15. H. G. Bachmann, F. R. Ahmed and W. H. Barnes, Z. Kristallogr. 115, 110 (1961).
16. H. G. Bachmann and W. H. Barnes, Z. Kristallogr. 115, 215 (1961).
17. R. Enjalbert and J. Galy, Acta Crystallogr. Sect. C 42, 1467 (1986).
18. C. Stålhandske, K. Aurivillius, and G.-I. Bertinsson, Acta Crystallogr. Sect. C 41, 167 (1985).
19. K. Brodersen, G. Liehr, and G. Schottner, Z. Anorg. Allg. Chem. 531, 158 (1985).
20. B. Kamenar, D. Matković-Čalogović, and A. Nagl, Acta Crystallogr. Sect. C 42, 385 (1986).
21. M. S. Schriewer-Pöttgen and W. Jeitschko, Z. Anorg. Allg. Chem. 620, 1855 (1994).
22. A. L. Wessels, "Darstellung und strukturelle Charakterisierung ternärer Quecksilberoxide," Dissertation, Westfälische Wilhelms-Universităt, Munster, 1996.

[^0]:    ${ }^{1}$ To whom correspondence should be addressed.

[^1]:    ${ }^{a}$ The atom labels correspond to those of Fig. 4 and Table 4. The standard deviations are all equal or less than $0.2^{\circ}$ in $\mathrm{HgVO}_{3}$ and $0.8^{\circ}$ in $\mathrm{Hg}_{2} \mathrm{VO}_{4}$.

